Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 36(5): 261-272, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36574016

RESUMO

The genes encoding the phosphate uptake system in Xanthomonas citri pv. glycines 12-2 were previously found to be upregulated when in soybean leaves. This study thus explored the role of the phosphate uptake system on its virulence to soybean. While phoB and pstSCAB mutants were greatly impaired in both inciting disease symptoms and growth in soybean, the virulence and growth in soybean of a phoU mutant was not reduced when compared with the wild-type strain. The expression of phoB and pstSCAB was highly induced in phosphate-deficient media. In addition, the expression of phoB, assessed with a fusion to a promoterless ice nucleation reporter gene, was greatly increased in soybean leaves, confirming that the soybean apoplast is a phosphorus-limited habitat for X. citri pv. glycines. Global gene expression profiles of phoB and phoU mutants of X. citri pv. glycines conducted under phosphate-limitation conditions in vitro, using RNA-seq, revealed that PhoB positively regulated genes involved in signal transduction, the xcs cluster type II secretion system, cell motility, and chemotaxis, while negatively regulating cell wall and membrane biogenesis, DNA replication and recombination and repair, and several genes with unknown function. PhoU also positively regulated the same genes involved in cell motility and chemotaxis. The severity of bacterial pustule disease was decreased in soybean plants grown under high phosphate fertilization conditions, demonstrating that high phosphate availability in soybean plants can affect infection by X. citri pv. glycines by modulation of the expression of phosphate uptake systems. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Glycine max , Xanthomonas , Glycine max/microbiologia , Fosfatos , Glicina , Virulência/genética , Xanthomonas/genética , Xanthomonas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...